
MATH 20610, LINEAR ALGEBRA
NOTATION, TERMINOLOGY AND BASIC FACTS

JEFFREY DILLER

Abstract. The following is intended as a helpful summary and some further comments
concerning the linear algebra we’ve been learning. It’s meant to complement and reinforce
lecture and homework but not certainly not replace them. If you see anything suspicious,
ask about it—there are likely some typos. Things highlighted in red are important enough
that I expect you to be able to define/state them yourself on quizzes and exams.

1. Matrices and vectors

Definition 1.1. A m× n matrix is a rectangular array of numbers
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


The number aij is called the ij-entry of A.

Definition 1.2. A column n-vector is an n× 1 matrix

v =

v1
...
vn


A row n-vector is a 1× n matrix

w =
(
w1 . . . wn

)
.

More often than not our vectors will be column vectors, and if the context is clear enough,
we’ll just say ‘vector’ instead of ‘column n-vector’ and not make much distinction between
row and column vectors. We’ll use Rn to denote the set of all n-vectors.

Definition 1.3. Let A = (aij) and B = (bij) be m×n matrices and c ∈ R be a scalar. Then
we let

• A+B denote the matrix whose ij-entry is aij + bij, and
• cA denote the matrix whose ij-entry is caij.

One can check that matrix arithmetic follows many of the usual rules: i.e. if A, B and C
are m× n matrices and a, b ∈ R are scalars, then

• A+B = B + A;
• (A+B) + C = A+ (B + C);
• (a+ b)C = aC + bC; and
• a(B + C) = aB + aC.
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Finally, if 0m×n denotes the m× n matrix whose entries are all zeros, then

• a0m×n = 0m×n; and
• 0m×n + A = A.

Note that we use 0n ∈ Rn to denote the vector whose entries are all zero. And we will often
drop the subscripts, writing 0 for the zero matrix and 0 for the zero vector when there isn’t
much danger of confusion.

The terminology in the following definition is not used in Bretscher, but I will use it freely.

Definition 1.4. Let A be a matrix.

• The leftmost non-zero entry in a given row of a matrix is called the pivot for that
row.

• A is said to be in (row) echelon form if the pivot entry (if any) in each row lies to
the left of the pivot entry (if any) in the next row.

• If A is in echelon form, then a pivot column of A is one containing the pivot from
some row of A.

Definition 1.5. A matrix A is said to be in reduced (row) echelon form (RREF for short)
if it is in echelon form and, additionally,

• all pivot entries are equal to 1; and
• all entries in each pivot column, except for the pivots, are equal to 0.

Definition 1.6. Matrices A and B are said to be row equivalent if one can be transformed
into the other by a sequence of elementary row operations.

Theorem 1.7. Every matrix is row equivalent to a matrix in reduced echelon form.

In fact, each matrix is row equivalent to exactly one matrix in reduced echelon form, but
this fact is a little difficult to justify.

Definition 1.8. 1 The rank of a matrix A is the number of pivots in the RREF matrix that
is row equivalent to A.

Definition 1.9. If v1, . . . ,vk ∈ Rn are vectors and c1, . . . ck ∈ R are scalars, then we call
the vector

c1v1 + . . . ckvk

a linear combination of v1, . . . ,vk.

Definition 1.10. The dot product of two vectors v =

v1
...
vn

 ,w =

w1
...
wn

 ∈ Rn is the scalar

quantity
v ·w := v1w1 + . . . vnwn.

Again, the dot product shares many properties with standard multiplication of real num-
bers. If uv,w ∈ Rn are vectors and a, b ∈ R are scalars, then

• v ·w = w · v;
• u · (v +w) = u · v + u ·w;
• 0 · v = 0; and

1This definition is superseded by Definition 6.18 below.
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• a(v ·w) = (av) ·w = v · (aw).

Definition 1.11. Let A be anm×n matrix with columns v1, . . . ,vn ∈ Rm and x =

x1
...
xn

 ∈

Rn be another vector. Then the product of A and x is the vector

Ax = x1v1 + . . . xnvn ∈ R.

Alternatively, if w1, . . . ,wm ∈ Rn are the rows of A, then

Ax =

w1 · x
...

wm · x

 .

Proposition 1.12. Let A and B be m × n matrices, x,y ∈ Rn be vectors and c ∈ R be a
scalar. Then

• A(x+ y) = Ax+ Ay;
• c(Ax) = (cA)x = A(cx);
• (A+B)x = Ax+Bx.

The n× n identity matrix is

In×n :=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


That is, I is a ‘square’ matrix, with the same number of rows as columns, and its ij-entry
is 1 if i = j and 0 if i ̸= j.

Proposition 1.13. For any vector v ∈ Rn, we have 0m×nv = 0m and In×nv = v.
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2. Linear systems

Definition 2.1. An m× n linear system is a list of equations

a11x1 + a12x2+ . . . a1nxn = b1.
a21x2 + a22x2+ . . . a2nxn = b2.

...
...

am1x2 + am2x2+ . . . amnxn = bm.

Here aij ∈ R are the coefficients of the system, b1, . . . , bm ∈ R are given numbers and
x1, . . . , xn ∈ R are the variables (i.e. unknown numbers to be solved for).

There are three possibilities for a given linear system:

• The system has no solutions x =

x1
...
xn

 ∈ Rn;

• The system has exactly one solution x ∈ Rn;
• The system has infinitely many solutions x ∈ Rn.

In the first case, we call the system inconsistent. In the other two cases, we call it consistent.
There are several different and useful ways to express a linear system. First of all, one can

write it as m× (n+ 1) augmented matrix
a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2
...

...
...

...
am1 am2 . . . amn | bm.


Using Gauss-Jordan elimination, one can perform elementary row operations on the aug-
mented matrix to put it in reduced echelon form. If, at that point, there is a pivot in the
very last column, the linear system is inconsistent. If every column except the last one has a
pivot, then the system has exactly one solution. If neither of these are true (i.e. there is no
pivot in the last column and no pivot in at least one of the other columns), then the system
has infinitely many solutions.

We call the m × n matrix A = (aij) the coefficient matrix of the system. Setting b := b1
...
bm

 ∈ Rm, we can rewrite the augmented matrix very compactly as

[
A | b

]
.

If w1, . . . ,wm ∈ Rm are the rows of A, and we set x =

x1
...
xn

 then we can write the linear

system as

w1 · x = b1
...

wm · x = bm.
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In terms of the columns v1, . . . ,wn ∈ Rm of A, the system becomes a vector equation

x1v1 + · · ·+ xnvn = b.

Finally, this can be rewritten as a matrix/vector equation

Ax = b,

which is probably the best way of all to write a linear system.
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3. Linear Transformations

Definition 3.1. A function T : Rn → Rm is a linear transformation if for any vectors
v,w ∈ Rn and any scalar c ∈ R we have

• T (v +w) = T (v) + T (w), and
• T (cv) = cT (v).

The two conditions in this definition are often rephrased by saying that ‘T commutes
with vector addition and scalar multiplication.’ Together they imply that ‘T commutes with
linear combinations’:

Proposition 3.2. If T : Rn → Rm is a linear transformation, and c1v1 + · · ·+ ckvk ∈ Rn is
a linear combination, then

T (c1v1 + · · ·+ ckvk) = c1T (v1) + · · ·+ ckT (vk).

The prototypical, and in some sense only, example of a linear transformation is a matrix
transformation: if A is an m × n matrix, they we get a function T = TA : Rn → Rm given
by T (x) = Ax for all x ∈ Rn. The next theorem explains the relationship between linear
and matrix transformation. In order to state it we introduce some new notation.

Definition 3.3. Given j ∈ {1, . . . , n}, the jth standard basis vector ej ∈ Rn is the vector
jth entry is 1 and whose other entries all equal 0.

The point is that any other vector x =

x1
...
xn

 ∈ Rn is easily written as a linear combination

x = x1e1 + · · ·+ xnen

of standard basis vectors.

Theorem 3.4. A function T : Rn → Rm is a linear transformation if and only if it is a
matrix transformation. In this case, the matrix [T ] for T is given column-wise by

[T ] =
[
T (e1) . . . T (en)

]
,

where e1, . . . , en ∈ Rn are the standard basis vectors.

Example 3.5. Let id : Rn → Rn denote the identity transformation, given by id(x) = x for
all x ∈ Rn. Then the matrix for id is the identity matrix, i.e.

[id] = In×n.

Also, if 0 : Rn → Rn denotes the zero transformation, given by 0(x) = 0 for all x ∈ Rn, then
the matrix for 0 is the n× n 0-matrix, i.e.

[0] = 0n×n
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4. Geometry and linear transformations

In this section we describe matrices associated to a variety of geometrically defined trans-
formations. Our first result concerns plane rotations and is really more of a definition than
a proposition.

Proposition 4.1. Given θ ∈ R, Let Rθ : R2 → R2 be the function defined by setting
T (v) equal to the vector obtained by rotating v counterclockwise by θ. Then Rθ is a linear
transformation, and its matrix is

[Rθ] =

(
cos θ − sin θ
sin θ cos θ

)
Our other geometric transformations require a little warmup.

Definition 4.2. The length (or norm) of a vector v =

v1
...
vn

 ∈ Rn is the quantity

∥v∥ :=
√
v · v =

√
v21 + · · ·+ v2n ∈ R.

The three key properties of length are the following

Proposition 4.3. For any vectors v,w ∈ Rn and any scalar c ∈ R, we have

• (positivity) ∥v∥ ≥ 0, and ∥v∥ = 0 if and only if v = 0;
• (homogeneity) ∥cv∥ = |c| ∥v∥;
• (triangle inequality) ∥v +w∥ ≤ ∥v∥ + ∥w∥.

The first two of these properties are fairly straightforward to check. The third is harder,
and I won’t really prove it til later in the course.

Definition 4.4. If u ∈ Rn has length ∥u∥ = 1, then we call u a unit vector.

If v ∈ Rn is a non-zero vector, then one checks that v
∥v∥ is unit vector.

Pythagorus’ Theorem, together with the relationship between length and dot product, is
the key to the following definition.

Definition 4.5. Vectors v,w ∈ Rn are called orthogonal (or perpendicular) if v ·w = 0.

Theorem 4.6 (Orthogonal decomposition). Let v ∈ Rn be a non-zero vector. Then any
other vector w ∈ Rn can be written in exactly one way as a sum

w = w∥ +w⊥,

where w∥ is a scalar multiple of v and and w⊥ is orthogonal to v. The vector w∥ is given by

w∥ =
w · v
v · v

v.

Definition 4.7. Let v ∈ Rn be a non-zero vector. Then the set L ⊂ Rn of all scalar multiples
of v is the line through 0 and v.

Definition 4.8. Let v ∈ Rn be a non-zero vector and L ⊂ Rn be the line through 0 and
v. Then the vector projv(w) := w∥ in Theorem 4.6 is called the orthogonal projection of w
onto L (or onto v).
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Proposition 4.9. Let v =

v1
...
vn

 ∈ Rn be a non-zero vector. Then projL : Rn → Rn is a

linear transformation, and its matrix is given (column-wise) by the formula

[projL] =
1

∥v∥2
[
v1v . . . vnv

]
.

Proposition 4.10. Let v ∈ Rn be a non-zero vector and L ⊂ Rn denote the line joining 0
to v. Let refL : Rn → Rn be the function defined by setting refL(w) equal to the reflection of
w through v. Then refL is a linear transformation given by

refL(w) = 2 projL(w)−w.

It’s matrix is therefore given by

[refL] = 2[projL]− I
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5. Matrix Multiplication and Composition of Linear Transformations

Definition 5.1. Let A =
[
v1 . . . vn

]
be a p× n matrix and B be an m× p matrix. Then

the matrix product of B and A is the m× n matrix

BA :=
[
Bv1 . . . Bvn

]
.

Note that it’s important in this definition that the number of columns of B matches the
number of rows of A. The main reason for all this is the following.

Theorem 5.2. Let S : Rn → Rp and R : Rp → Rm be linear transformations. Then
R ◦ S : Rn → Rm is also a linear transformation, and its matrix is given by the formula

[R ◦ S] = [R][S].

Theorem 5.3. Let A,B,C be matrices and λ ∈ R be a scalar. Then

• AI = IA = A;
• λ(AB) = (λA)B = A(λB);
• A(B + C) = AB + AC;
• (A+B)C = AC +BC;
• A(BC) = (AB)C;

provided the sizes of the matrices involved are compatible with each other.

5.1. Matrix inverses.

Definition 5.4. A matrix A is invertible if there is another matrix B such that AB = BA =
I. We then say that B is the inverse of A and write A−1 = B.

Proposition 5.5. A matrix A has at most one inverse.

Theorem 5.6. If an m× n matrix A is invertible, then for any b ∈ Rm, the linear system
Ax = b has exactly one solution.

That Ax = b has at most one solution means that A is row equivalent to a RREF matrix
with a pivot in every column. Then Ax = b has at least one solution for any b means that
A is row equivalent to an RREF matrix with a pivot in every row. Since no row or column
of an RREF matrix contains more than one pivot, the condition that Ax = b has exactly
one solution for all vectors b ∈ Rm implies that A has the same number of rows as columns.

Corollary 5.7. If A is invertible, then A is square.

Even square matrices needn’t be invertible though. The next result gives several different
ways to tell the difference between invertible and non-invertible square matrices.

Corollary 5.8. The following are equivalent for an n× n matrix A.

(1) A is invertible.
(2) A has rank n.
(3) A is row equivalent to the n× n identity matrix.
(4) There is an n× n matrix B such that AB = I.
(5) There is an n× n matrix B such that BA = I.

In the case of 2× 2 matrices, there is a reasonably easy to remember formula for A−1.
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Proposition 5.9. A 2× 2 matrix A =

(
a b
c d

)
is invertible if and only if ad− bc ̸= 0. The

inverse of A is then given by

A−1 =
1

ad− bc

(
d −b
−c a

)
.

For non-zero real numbers a, b we know that 1
ab

= 1
a
· 1
b
. The analogous fact for matrices

is the following.

Proposition 5.10. If A and B are invertible n× n matrices, then

• A−1 is invertible, with (A−1)−1 = A;
• An is invertible for any positive integer n, with (An)−1 = A−n;
• AB is also invertible, with (AB)−1 = B−1A−1.

Recall that the reason we defined matrix multiplication the way we did is that matrix mul-
tiplication corresponds to composition of linear transformations. So maybe it’s not surprising
that invertible matrices correspond to invertible linear transformations.

Definition 5.11. A function T : Rn → Rm is invertible if there is a function S : Rm → Rn

such that S ◦ T = id and T ◦ S = id. We then write T−1 = S.

Theorem 5.12. If T : Rn → Rm is a invertible linear transformation, then T−1 is also
linear. Hence m = n and the matrices for the two transformations satisfy [T−1] = [T ]−1.
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6. Span, Linear Independence, Subspace and Basis

Definition 6.1. The span of vectors v1, . . . ,vk ∈ Rn is the set

span{v1, . . . ,vk} := {c1v1 + · · ·+ ckvk ∈ Rn : c1, . . . , ck ∈ R}
of all linear combinations of v1, . . . ,vk.

Some examples:

• span(0) = {0}
• span(e1, . . . , en) = Rn

• if v ∈ Rn is non-zero, then span(v) is a line through 0;
• if v,w ∈ Rn are non-zero and not multiples of each other, then span(v,w) is a plane
through 0.

Here are some other sets that turn out to be spans.

Definition 6.2. Let T : Rn → Rm be a linear transformation.

• The image (alternatively, range) of T is the set

image(T ) := {T (x) ∈ Rm : x ∈ Rn.

• The kernel of T is the set

ker(T ) := {x ∈ Rn : T (x) = 0}

The following fact follows more or less directly from definitions.

Proposition 6.3. Suppose T : Rn → Rm is a linear transformation with matrix [T ] = A.
Then image(T ) is the span of the columns of A and ker(T ) is the set of solutions x ∈ Rn of
Ax = 0.

We remark that a linear system of the form Ax = 0 is called homogeneous, whereas a
linear system Ax = b for b ̸= 0 is called inhomogeneous.
Hence, following Bretscher, we will also write image(A) and ker(A) to mean the same

thing as image(T ) and ker(T ). Many other boooks refer to these sets as the column space
and nullspace of A, respectively. The importance of ker(A) for solving linear systems is seen
in the following fact.

Proposition 6.4. Let A be an m × n matrix and b ∈ Rm, xp ∈ Rn be vectors satisfying
Axp = b. Then a(nother) vector x ∈ Rn solves Ax = b if and only if

x = xp + xh

for some vector xh ∈ ker(T ).

The ‘p’ and ‘h’ subscripts here stand for ‘particular’ (as in ‘some particular solution of
Ax = b’) and ‘homogeneous’ (as in ‘solution of the homogeneous linear system Ax = 0’.

Definition 6.5. A linear relation among vectors v1, . . . , vvk ∈ Rn is a list of scalars
c1, . . . , ck ∈ R such that

c1v1 + · · ·+ ckvk = 0.

One always has the trivial relation

0v1 + · · ·+ 0vk = 0.
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The point is that when there is a non-trivial relation among v1, . . . ,vk, then one of these
vectors can be written as a linear combination of the others. We can remove this vector from
the list without changing the span of v1, . . . ,vk.

If A =
[
v1 . . . vk

]
, then a linear relation among v1, . . . ,vk is a solution x =

c1
...
ck

 of

Ax = 0. Hence there are non-trivial relations if and only if ker(A) contains something other
than the zero vector.

Definition 6.6. Vectors v1, . . . ,vk ∈ Rn are called linearly independent if

c1v1 + · · ·+ ckvk = 0

only when c1 = · · · = ck = 0.

In other words, v1, . . . ,vk ∈ Rn are linearly independent if there are no non-trivial linear
relations among them. If, on the other hand, there exists a non-trivial relation, we say that
v1, . . . ,vk are linearly dependent.

Remark 6.7. A single vector v ∈ Rn is linearly independent if and only if v ̸= 0. Two
vectors v,w ∈ Rn are linearly independent if and only if neither is a scalar multiple of the
other. In general, to check whether v1, . . . ,vk ∈ Rn are linearly independent, you can do the
following.

(1) Create the matrix A =
[
v1 . . . vk

]
.

(2) Use row operations to find a row equivalent matrix Ã in row echelon form.
(3) Then v1, . . . ,vk are linearly independent if and only if every column of Ã has a pivot.

In fact, if you discard all the columns of A that correspond to columns of Ã that lack pivots,
then the columns that remain are linearly independent, and they still span image(A).

Remark 6.8. Recall that vectors in the kernel of a matrix A (i.e. the solutions of Ax = 0) can
be expressed as a linear combination of vectors whose coefficients are the free variables of the
RREF matrix Ã that is row equivalent to A. These vectors are always linearly independent.

Definition 6.9. A set of vectors W ⊂ Rn is a subspace if

(1) 0 ∈ W ;
(2) if v ∈ W and c ∈ R, then cv ∈ W ;
(3) if u,v ∈ W , then u+ v ∈ W .

Alternatively, a subspace of Rn is a non-empty set of vectors W ⊂ Rn that is closed with
respect to scalar multiplication and vector addition.

Example 6.10. Some instances of subspaces of Rn:

• the trivial subspace W = {0};
• W = Rn;
• the kernel of a linear transformation T : Rn → Rm (i.e. of an m× n matrix).
• the image of a linear transformation T : Rm → Rn (i.e. of an n×m matrix).

Proposition 6.11. For any v1, . . . ,vk ∈ Rn, the set W = span(v1, . . . ,vk) is a subspace of
Rn.

Definition 6.12. Let W ⊂ Rn be a subspace. A basis for W is a linearly independent list
of vectors v1, . . . ,vk ∈ W that span W .
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Example 6.13. The standard basis vectors e1, . . . , en ∈ Rn constitute a basis for Rn. On the
other hand, the trivial subspace {0} ⊂ Rn has no basis.

One should note that a basis for a subspace is never unique. If you can find one, you can
find many others. The next theorem is probably the most important basic result in linear
algebra.

Theorem 6.14 (Fundamental Theorem of Linear Algebra). Every non-trivial subspace of
Rn has a basis, and any two bases for the same subspace have the number of vectors.

We adopt the convention that the trivial subspace {0} ⊂ Rn has dimension 0.
The following auxiliary result is the key ingredient in the proof of Theorem 6.14

Lemma 6.15. Let W ⊂ Rn be a subspace. If v1, . . . ,vk ∈ W span W and u1, . . . ,uℓ ∈ W
are linearly independent, then k ≥ ℓ.

Corollary 6.16. Let W ⊂ Rn be a subspace. The following are equivalent for a subset
B = {v1, . . . ,vk} ⊂ W .

• B is a basis for W ;
• k = dimW and B is linearly independent subset of W ;
• k = dimW and B spans W .

The second criterion in this corollary is often rephrased a little informally as: ‘B is a
maximal linearly independent subset of W ’. Likewise the third criterion can be rephrased:
‘B is a minimal spanning subset of W .’

Definition 6.17. The dimension dimW of a subspace W ⊂ Rn is

• 0 if W = {0} is trivial;
• the number of vectors in a basis for W , if W is non-trivial.

In particular dimRn = n because the standard basis vectors e1, . . . , en constitute a basis E
for Rn. We can now give a better definition of the rank of a matrix. Henceforth the following
supersedes Definition 1.8 above.

Definition 6.18. Let T : Rn → Rm be a linear transformation and A be its matrix. Then

• the rank of T (or of A) is the dimension of the image of T ;
• the nullity of T (or of A) is the dimension of the kernel of T .

To see that this definition doesn’t outright contradict our old definition of rank, note the
following.

Proposition 6.19. Let A be an m× n matrix and Ã be an RREF matrix row equivalent to
A. Then

• rankA is the number of (columns with) pivots in Ã;
• nullityA is the number of columns without pivots in Ã (i.e. the number of free
variables).

The following is an immediate consequence. Even though the kernel of a linear transfor-
mation is a subset of its domain whereas the image of the transformation is a subset of its
codomain, the fact is that the dimensions of kernel and range are tightly related.

Theorem 6.20 (The Rank Theorem). If T : Rn → Rm is a linear transformation, then

rankT + nullity T = n.
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7. Coordinates

Proposition 7.1. Let B = {v1, . . . ,vk} be a basis for a subspace W ⊂ Rn. Then for any
vector w ∈ W , there are unique scalars x1, . . . , xk ∈ R such that

w = x1v1 + · · ·+ xkvk.

We call the scalars x1, . . . , xk in this proposition the coordinates of w relative to the basis
B and let

[w]B :=

x1
...
xk

 ∈ Rk

be the associated coordinate vector. Note that the coordinates of w relative to another
basis will be different from the coordinates of w relative to B. Note also that if we set
SB :=

[
v1 . . . vk

]
, then w and its coordinate vector are related by

w = SB[w]B.

Finally, if E := {e1, . . . , en} ⊂ Rn is the ‘standard’ basis for Rn, note that [w]E = w for all
w ∈ Rn.

The following is kind of a mouthful, but it turns out to be extremely useful.

Theorem 7.2. Let T : Rn → Rn be a linear transformation with matrix A = [T ] and
B = {v1, . . . ,vn} ⊂ Rn be a basis for Rn. Let S =

[
v1 . . . vn

]
. Then for any v ∈ Rn, the

B-coordinates of v and T (v) are related by

[T (v)]B = B[v]B,

where the n× n matrix B satisfies

B = S−1AS =
[
[T (v1)]B . . . [T (vn)]B

]
.

We call the matrix B in this theorem the matrix for T relative to the basis B or, for short,
just the B-matrix of T . The matrix [T ] = A is then the standard matrix for T . You might
catch me writing [T ]B in place of B since that’s a common (though non-Bretscher) sort of
notation to use in this context.
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8. Orthogonality and Subspaces

A key fact about dot products is the following.

Theorem 8.1 (Cauchy-Schwarz inequality). For any v,w ∈ Rn, we have |v ·w| ≤ ∥v∥ ∥w∥.
Corollary 8.2 (Triangle inequality). For any v,w ∈ Rn, we have ∥v +w∥ ≤ ∥v∥ + ∥w∥.

The Cauchy-Schwarz inequality allows us to make the following definition. In particular,
it guarantees that the right side of the equation in the proposition is between −1 and 1.

Definition 8.3. The angle between non-zero vectors v,w ∈ Rn is the number θ ∈ [0, π]
satisfying cos θ = v·w

∥v∥∥w∥

In particular θ = π/2 if v · w = 0, which is consistent with our earlier definition of
orthogonal.

Definition 8.4. A set of vectors {v1, . . . ,vk} ⊂ Rn is

• orthogonal if vi · vj = 0 whenever i ̸= j;
• orthonormal if also ∥vi∥ = 1 for i = 1, . . . , k.

Note that the standard basis {e1, . . . , en} for Rn is an orthonormal set.

Proposition 8.5. An orthogonal set {v1, . . . ,vk} of non-zero vectors is linearly independent.

Theorem 8.6. Every non-trivial subspace W ⊂ Rn has an orthonormal basis.

The proof of this theorem amounts to giving a recipe, called the Gram-Schmidt process for
actually building the orthonormal basis. It works as follows. Since W is non-trivial, we know
that it has some (not necessarily orthonormal or even orthogonal) basis B = {v1, . . . ,vk}.
One turns this into an orthogonal basis {w1, . . . ,wk} vector-by-vector as follows:

w1 = v1

w2 = v2 − projw1
(v2)

w3 = v3 − projw1
(v3)− projw2

(v3)

...

wk = vk − projw1
(vk)− projw2

(vk)− · · · − projwk−1
(vk).

Linear independence of B guarantees that each wj is non-zero, and one checks by taking the
dot product wj · wi that wj is orthogonal to wi for all i < j. Hence {w1, . . . ,wk} is an
orthogonal basis. The orthonormal basis {u1, . . . ,uk} for W is the obtained by normalizing:
uj =

wj

∥wj∥ .

Definition 8.7. The orthogonal complement of a subspace W ⊂ Rn is the set

W⊥ := {v ∈ Rn : v ·w = 0 for all w ∈ W}
of all vectors in Rn orthogonal to W .

The orthogonal complement of the trivial subspace {0} ⊂ Rn is all of Rn. Conversely,
(Rn)⊥ = {0}. Given a non-zero vector v ∈ R2, the orthogonal complement of the line
span(v) is the line span(w) where w is any non-zero vector orthogonal to v.

Proposition 8.8. Let W ⊂ Rn be a subspace and W⊥ ⊂ Rn be its orthogonal complement.
Then all of the following are true.
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• If v1, . . . ,vk ∈ Rn are vectors spanning W , then w ∈ W⊥ if and only if w · w1 =
· · · = w ·wk = 0.

• W⊥ is a subspace.

Theorem 8.9 (Orthogonal Decomposition Theorem). Let W ⊂ Rn be a subspace. Given any
vector v ∈ Rn, there are unique vectors v∥ ∈ W and v⊥ ∈ W⊥ such that v = v∥ + v⊥. If
B = {w1, . . . ,wk} is an orthogonal basis of W , then

v∥ = projw1
(v) + · · ·+ projwk

(v).

We call the vector projW (v) := v∥ in this theorem the orthogonal projection of v onto W .

Remark 8.10. The formula for v∥ in the Theorem is especially nice if we use an orthonormal
basis {u1, . . . ,uk} for W :

v∥ = (v · u1)u1 + · · ·+ (v · uk)uk

Remark 8.11. The discussion following Theorem 8.6 gives a recipe for constructing orthogonal
basis vectors w1, . . . ,wk for a subspace W with basis {v1, . . . ,vk}. We can now rewrite
the formula for wj more compactly as follows. If Wj−1 := span(v1, . . . ,vj−1), then wj =
vj − projWj−1

(vj).

Theorem 8.9 has a couple of useful (and fairly intuitive) consequences.

Corollary 8.12. For any subspace W ⊂ Rn we have

• (W⊥)⊥ = W ; and
• dimW + dimW⊥ = n.

16



9. Transposes and dot products

Definition 9.1. The transpose of an m×n matrix A = (aij) is the n×m matrix AT whose
ij-entry is aji.

Another way to say it is that the rows of AT are the columns of A and vice versa. The
reason transposes are important in linear algebra is the following fact about dot products.

Proposition 9.2. If A is an m × n matrix, then for any vectors v ∈ Rm and w ∈ Rn we
have that

v · (Aw) = (ATv) ·w.

Here is a list of the key algebraic properties of transposes.

Proposition 9.3. If A,B are matrices and c ∈ R is a scalar, then

• (AT )T = A;
• (cA)T = cAT ;
• (A+B)T = AT +BT (provided A and B have the same size);
• (AB)T = BTAT (provided the number of columns of A equals the number of rows of
B).

Often enough, one encounters square matrices that are equal to their own transposes.

Definition 9.4. A square matrix A is symmetric if AT = A.

Note that for any matrix A =
[
a1 . . . an

]
, the product ATA is the n × n symmetric

matrix whose ij-entry is ai · aj.

Definition 9.5. A matrix A is orthogonal if ATA = I.

Equivalently, A is orthogonal if its columns a1, . . . , an are an orthonormal set.

Remark 9.6. Beware that the order of AT and A is important in the definition of orthogo-
nality. Given a matrix A, the products ATA and AAT are both defined, but they are not
generally equal to each other. In fact, the only case when ATA and AAT even have the same
size is when A is a square matrix. In this case ATA = I means that A is invertible and
A−1 = AT . Hence in this case only AAT = AA−1 = I, too. That is, a square matrix A is
orthogonal if and only AT is also orthogonal. You should take a second to appreciate the
strangeness of this fact. Another way to state it is that the columns of a square matrix form
an orthonormal set if and only if the rows also form an orthonormal set.

The matrix for rotation by θ in R2 is orthogonal. So is the matrix for reflection about a
line through the origin in R2. Geometrically speaking, the reason one cares about orthogonal
matrices is that, like rotations and reflections, they preserve lengths of vectors and angles
between vectors.

Theorem 9.7. If A is an m×n orthogonal matrix, then for any vectors v,w ∈ Rn, we have
(Av) · (Aw) = v ·w. Hence also

• ∥Av∥ = v;
• the angle between Av and Aw is the same as the angle between v and w.

The next observation about transposes is important for the discussion in the next section
of least square solutions of (inconsistent) linear systems.
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Proposition 9.8. For any matrix A, we have (kerA)⊥ = imageAT and (imageA)⊥ =
kerAT .

Recall that the image of a matrix is just the span of its columns. Hence imageA is often
called the column space of A. Likewise, since the columns of AT are the rows of A, we have
that imageAT is just the span of the rows of A. So imageAT is often called the row space
of A.

Corollary 9.9. For any matrix A we have rankA = rankAT .

In other words the subspaces imageA and imageAT have the same dimension. Keep in
mind that if A is m × n, then imageA ⊂ Rm while imageAT ⊂ Rn. So it’s maybe a little
surprising that their dimensions should be the same.
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10. Least Squares Solutions of Linear Systems

In many practical situations, one arrives at linear systems with many more equations than
unknowns. These are typically inconsistent. This section presents a next best alternative to
finding an actual solution to such systems.

Definition 10.1. Let A be an m × n matrix and b ∈ Rm be a vector. We call x∗ ∈ Rn a
least squares solution of the system Ax = b if the distance between Ax∗ and b is minimal,
i.e. if

∥Ax∗ − b∥ ≤ ∥Ax− b∥
for all x ∈ Rn.

Theorem 10.2. Let A be an m × n matrix and b ∈ Rm be a vector. Then x∗ ∈ Rn is a
least squares solution of Ax = b if and only if ATAx∗ = ATb.

Definition 10.3. The normal equation of a linear system Ax = b is the associated linear
system ATAx = ATb.

The proof of Theorem 10.2 uses the following fact about orthogonal projections.

Proposition 10.4. Let W ⊂ Rn be a subspace and v ∈ Rn be a vector. Then projW (v) is
the closest vector in W to v. That is, for any w ∈ W we have

∥v −w∥ ≥ ∥v − projW (v)∥ ,
and equality holds only if w = projW (v).

This justifies the following.

Definition 10.5. The distance between a vector v ∈ Rn and a subspace W ⊂ Rn is the
quantity

dist(v,W ) := ∥v − projW (v)∥ .

Note that to prove Theorem 10.2 one applies Proposition 10.4 with W := imageA and
v := b.

Theorem 10.2 admits a few refinements, which I summarize here as follows.

Theorem 10.6. Let A be an m×n matrix and b ∈ Rm be a vector. Then all of the following
hold.

• The linear system Ax = b always has a least squares solution x∗ ∈ Rn.
• If Ax = b is consistent, then every solution of Ax = b is a least squares solution
and vice versa.

• If x∗ ∈ Rn is a least squares solution of Ax = b, then y∗ ∈ Rn is also a least squares
solution of Ax = b if and only if x∗ − y∗ ∈ kerA.

• Hence Ax = b has infinitely many least squares solutions if and only if the homoge-
neous system Ax = 0 has infinitely many (ordinary) solutions.
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11. Determinants

To any collection of n vectors v1, . . . ,vn ∈ Rn, we can associate the set

P (v1, . . . ,vn) := {c1v1 + · · ·+ cnvn ∈ Rn : 0 ≤ c1, . . . , cn ≤ 1}.

This is called the parallelotope with sides v1, . . . ,vn. Note in particular, that if n = 2, then
P (v1,v2) is just the parallelogram with vertices 0,v1,v2,v1+v2. And when v1 = e1, . . .vn =
en are the standard basis vectors P (e1, . . . , en) is just an n-dimensional version of a cube
with side lengths 1. In any case, we can think of v1, . . . ,vn as rows in a square matrix A
and then introduce the notion of ‘determinant of A’ in order to compute the n-dimensional
volume of P (v1, . . . ,vn).

Definition 11.1. Let Mn×n be the set of all n×n matrices. We call a function det : Mn×n →
R a determinant if it has the following properties.

• det I = 1.
• Let A,B ∈ Mn×n be matrices. If B is obtained by multiplying some row of A by a
scalar c, then detB = c detC;

• If instead B is obtained from A by adding a multiple of one row to a different row,
then detB = detA.

Often, especially during computations, one writes |A| instead of detA.
For the next several results, suppose that det : Mn×n → R is a determinant function. Note

that since the scalar c can be negative in the second condition, it is possible that a matrix
can have a negative determinant. So in fact, we’re actually defining ‘volume with a sign’
rather than a vanilla never-negative volume. Think of it as the cost of keeping things linear.

Proposition 11.2. Let A ∈ Mn×n be a matrix.

• If some row of A is equal to 0, then detA = 0.
• If B ∈ Mn×n is obtained from A by swapping two different rows of A, then detB =
− detA

We now understand the effect of all three elementary row operations on the determinant
of a matrix. Since every square matrix is row equivalent to either the identity (whose
determinant is prescribed to be 1) or to a matrix with a row equal to 0, it follows that
there is only one possible determinant function. So from now on, we can talk about the
determinant fucntion, rather than a determinant function. Note, though, that one still
needs to show that the determinant function actually exists.

Proposition 11.3. The following are equivalent for A ∈ Mn×n.

• detA ̸= 0;
• A is row equivalent to the identity matrix;
• the rows (and columns) of A are linearly independent.
• A is invertible.

The next result is a serious labor saver: when using row operations to find the determinant
of a matrix, you don’t need to go all the way to reduced echelon form.

Proposition 11.4. If A ∈ Mn×n is upper triangular, then detA = a11a22 . . . ann is the
product of the diagonal entries of A.
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11.1. Cofactor expansion. There is another ‘recursive’ method for computing determi-
nants. It works well for small matrices, matrices with lots of 0’s among their entries, and
for matrices whose entries are algebraic expressions rather than specific numbers. But for
larger matrices, it is extremely time consuming to execute, even for a computer.

To explain the method we consider first a warm-up case. Note that if A = (a11) is 1 × 1
matrix, then detA = a11. Going one dimension up, we have

Proposition 11.5. Determinants of 2× 2 matrices are given by the following formula.∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

Now on to bigger matrices.

Definition 11.6. The ij-minor of an n × n matrix A is the (n − 1) × (n − 1) matrix Aij

obtained by deleting the ith row and jth column of A.

Theorem 11.7. Let A = (aij) be an n×n matrix. Then for any i between 1 and n we have

detA =
n∑

j=1

(−1)i+jaij detAij.

similarly, for any j between 1 and n we have

detA =
n∑

i=1

(−1)i+jaij detAij.

The quantity (−1)i+j detAij is called the ij-cofactor of A. We call the first formula in
Theorem 11.7 the cofactor expansion of detA about row i and the second formula, the
cofactor expansion of A about column j. Both formulas express the determinant of an n×n
matrix as sums of determinants of (n− 1)× (n− 1) matrices. Applying the theorem again
further gives the latter determinants as sums of determinants of (n− 2)× (n− 2) matrices,
and so on until you get down to determinants of (a very large number of) 2× 2 matrices.
It’s somewhat remarkable that one can use either rows or columns for cofactor expan-

sions. In particular, since cofactor expansion about the ith row of A is the same as cofactor
expansion about the ith column of AT , we arrive at the following consequence.

Corollary 11.8. For any square matrix A, we have detA = detAT .

Cofactor expansion leads to many other suprising (but not computationally very useful)
formulas in linear algebra. I’ll give one of them here (a generalization of Proposition 5.9
above) and you can look in the textbook for others (e.g. Cramer’s Rule).

Theorem 11.9. Let A ∈ Mn×n be a matrix and C ∈ Mn×n be the matrix whose ij-entry is
(−1)i+j detAij. Then

A−1 =
CT

detA
.

In case anyone asks, the matrix C in the theorem is sometimes called the adjugate or
classical adjoint of the matrix A. These terms don’t get used much in math these days, so
I don’t expect you to remember them. For myself, I’d just call C the cofactor matrix for A.
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11.2. Determinants and linear transformations. The next result is stated a little im-
precisely.

Theorem 11.10. Let T : Rn → Rn be a linear transformation with matrix A. Then the
n-dimensional volume of any set Ω ⊂ Rn is related to the volume of its image T (Ω) by

VolT (Ω) = | detA|Vol(Ω).

This leads one (philosophically at least) to the following remarkable fact about determi-
nants.

Theorem 11.11. For any n× n matrices A and B, we have det(AB) = det(A) det(B).

It should be stressed that there is no corresponding formula for sums of matrices. Any-
how, the fact that determinants distribute over matrix multiplication has some interesting
consequences.

Corollary 11.12. Given A ∈ Mn×n, we have

• detAn = (detA)n;
• if A is invertible, then det(A−1) = 1/ det(A).
• if A is orthogonal, then detA = ±1.
• if B ∈ Mn×n is similar to A, then detB = detA.

Concerning the last item in the corollary, recall that a linear transformation T : Rn → Rn

has a matrix [T ]B relative to any given basis for Rn. We therefore define detT := det[T ]B.
One might object that if C is a different basis for Rn, then typically [T ]B ̸= [T ]C, so this
definition seems to depend on which basis we use. Recall, however, that the matrices [T ]B
adn [T ]C are at least similar to each other. Hence the corollary tells us that det[T ]B = det[T ]C.
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12. Diagonalization

The terminology in this section depends on concepts introduced in Section 7. Be prepared
to have a look back at that section to make sense of this one.

Recall that a matrix Λ ∈ Mn×n is called diagonal if it has the form

Λ =


λ1 0 . . . 0
0 λ2 . . . 0

...
...
. . .

...
0 0 . . . λn


Definition 12.1. A linear transformation T : Rn → Rn is diagonalizable if there exists a
basis B for Rn such that the matrix [T ]B is diagonal.

We say that the basis B in this definition diagonalizes T .

Remark 12.2. A linear transformation T : Rn → Rn with the same domain and codomain is
often called a linear operator.

Definition 12.3. Let T : Rn → Rn be linear. A non-zero vector v ∈ Rn is called an
eigenvector for T with eigenvalue λ ∈ R if T (v) = λv.

Proposition 12.4. Let T : Rn → Rn be linear, with (standard) matrix A := [T ] ∈ Mn×n.
The following are equivalent for a basis B = {v1, . . . ,vn} for Rn.

• [T ]B = Λ :=


λ1 0 . . . 0
0 λ2 . . . 0

...
...
. . .

...
0 0 . . . λn

 is diagonal.

• Each vector vj ∈ B is an eigenvector for T with eigenvalue λj.
• A = SBΛS

−1 where SB =
[
v1 . . . vn

]
.

One can use this proposition to reformulate the definitions above as statements about
matrices.

Definition 12.5. A matrix A ∈ Mn×n is diagonalizable if it is similar to to a diagonal
matrix.

Definition 12.6. v ∈ Rn is an eigenvector with eigenvalue λ ∈ R for a matrix A ∈ Mn×n if
Av = λv.

The main point of diagonalization is that it makes it easy to iterate T (equivalently, find
powers of A).

Proposition 12.7. Suppose that T : Rn → Rn given by T (x) = Ax is diagonalized by a
basis B for Rn. Then the k-fold composition (i.e. kth power) T k := T ◦ · · · ◦ T of T is also
diagonalized by cB.

Specifically,

[T ]B = Λ :=


λ1 0 . . . 0
0 λ2 . . . 0

...
...
. . .

...
0 0 . . . λn

 implies that [T k]B = Λk :=


λk
1 0 . . . 0
0 λ2 . . . 0

...
...
. . .

...
0 0 . . . λk

n


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Actually finding the eigenvalues and eigenvectors of a square matrix can be tricky. The
following proposition allows us to find the eigenvalues and eigenvectors of a linear transfor-
mation.

Proposition 12.8. Let A ∈ Mn×n be a matrix and λ ∈ R be a scalar. Then the following
are equivalent.

• λ is an eigenvalue of A;
• ker(A− λI) is non-trivial;
• det(A− λI) = 0.

In any case a non-zero vector v ∈ Rn is an eigenvector of A with eigenvalue λ if and only if
v ∈ ker(A− λI).

This proposition leads to some further observations and definitions.

Definition 12.9. Given A ∈ Mn×n and λ ∈ R, the λ-eigenspace of A is ker(A− λI)

In particular, the λ-eigenspace of A is a subspace of Rn. It is non-trivial if and only if λ is
an eigenvalue of A.

Definition 12.10. The characteristic polynomial of a matrix A ∈ Mn×n is the the function
λ 7→ det(A− λI).

Cofactor expansion tells us that the characteristic polynomial of A is a polynomial of
degree n. Proposition 12.8 tells us that λ ∈ R is an eigenvalue of A ∈ Mn×n if and only if λ
is a root of the characteristic polynomial of A.

Unfortunately not all square matrices are diagonalizable. So it is useful to have criteria
that we can use to recognize diagonalizability. The next result (especially the second one)
leads to a good, if not perfectly general, such criterion.

Proposition 12.11. Given A ∈ Mn×n, suppose that v1, . . . ,vk ∈ Rn are eigenvectors for
distinct eigenvalues λ1, . . . , λk of A. Then v1, . . . ,vk are linearly independent.

Corollary 12.12. If the characteristic polynomial of A ∈ Mn×n has n distinct real roots,
then A is diagonalizable.

Things get a little complicated when the roots of the characteristic polynomial are not
distinct.

Definition 12.13. Suppose that λ ∈ R is an eigenvalue of a matrix A ∈ Mn×n.

• The algebraic multiplicity of λ is the multiplicity of λ as a root of the characteristic
polynomial of A;

• The geometric multiplicity of λ is the dimension of the λ-eigenspace of A.

Typically (i.e. in some probabilistic sense), the geometric and algebraic multiplicities are
the same for any given eigenvalue of a matrix A. But there are exceptional cases. What is
always true is the following.

Theorem 12.14. If λ ∈ R is an eigenvalue of a matrix A ∈ Mn×n, then its geometric
multiplicity is no larger than its algebraic multiplicity.

This leads to the following generalization of Proposition 12.11.
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Theorem 12.15. A matrix A ∈ Mn×n is diagonalizable if and only if all roots of the char-
acteristic polynomial of A are real, and for each root λ ∈ R the algebraic multiplicty of λ
equals its geometric multiplicity as an eigenvalue of A.

In closing we note the following fact (related to the comment at the end of Section 11
above) about similar matrices.

Theorem 12.16. If A,B ∈ Mn×n are similar, then

• A and B have the same characteristic polynomial;
• hence A and B have the same eigenvalues, each with the same algebraic multiplicty;
• additionally, the geometric multiplicity of any eigenvalue is the same for A and B.

This is pertinent for the following reason. If T : Rn → Rn is linear, then the matrices [T ]B
and [T ]C for T relative to different bases are similar to each other. Hence we can find the
characteristic polynomial, the eigenvalues and their algebraic and geometric multiplicities
by working with any basis we like for Rn. However, since coordinates of a vector vary with
the basis the particular eigenvectors of [T ]B will vary with the basis B.
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Appendix A. Equivalent statements about matrices

Let A be an m× n matrix. By viewing A in different ways, e.g. as the coefficient matrix
in a linear system, as a list of columns or rows, or as a linear transformation, one can make
many different sounding statements about A that actually amount to the same thing.

The following table gives many of these statements. The first column lists various contexts
involving A. Each of the last three columns gives a list of logically equivalent statements.
Note that the statements in the first column can hold only when A has more rows than
columns (i.e. when m ≥ n), those in the second can hold only when n ≤ m, and those in the
third can hold only when m = n. Note also that the statements in the last column represent
the best case scenario when all the statements in the previous two columns hold at the same
time2.

RREF(A) pivot in each column pivot in each row I

Linear system
Ax = b

At most one
solution

At least one
solution

Exactly one
solution

Columns of A
(i.e. rows of AT )

linearly independent span Rm basis for Rm

Rows of A
(columns of AT )

span Rn linearly independent basis for Rn

Linear transformation
T (x) = Ax

ker(T ) = {0}
i.e. T is injective

image(T ) = Rm

i.e. T is surjective
T invertible

i.e. T is bijective
rankA

(=rankAT )
n m n = m

nullityA 0 n−m 0 (= n−m)

nullityAT m− n 0 0 (= m− n)

detA
(only if m = n)

N/A N/A ̸= 0

The most important rows in this table are the first four. In any case, you probably
shouldn’t try to memorize the table so much as understand why the various statements
in a given column are equivalent to each other. It’s mostly a matter of thinking through
the definitions of all the words involved, together with a few basic observations (e.g. every
non-pivot column of RREF (A) corresponds to a free variable).

2I don’t think I used the terms (in the linear transformation row) ‘injective’, ‘surjective’, ‘bijective’ in
class, so feel free to ignore those if they’re unfamiliar.
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Appendix B. Proof of the Fundamental Theorem of Linear Algebra

This isn’t really needed, but someone asked, so I thought I’d write out the proofs that I
gave in class for Lemma 6.15 and Theorem 6.14.

Proof of Lemma 6.15. Since v1, . . . ,vk span W , I can write each of the vectors w1, . . . ,wℓ ∈
W as linear combinations of v1, . . . ,vk. That is, if V =

[
v1 . . . vk

]
, then for each j

between 1 and ℓ, I have a vector aj ∈ Rk such that V aj = wj. In other words

VW = A

where W =
[
w1 . . . wℓ

]
and A =

[
a1 . . . aℓ

]
. Note in particular that A is a k × ℓ

matrix.
I claim that Ax = 0 has only the trivial solution Ax = 0. This implies, among other

things, that A is row equivalent to an RREF matrix Ã with a pivot in each column. Since
each row of Ã has at most one pivot, I infer that Ã (also a k× ℓ matrix) has at least as many
rows as columns. That is, k ≥ ℓ, which is what I wanted to prove.

I still need to justify my claim: if Ax = 0, then

Wx = V Ax = V 0 = 0,

too. But I can rewrite this as
x1w1 + · · ·+ xℓwℓ = 0.

By hypothesisw1, . . . ,wℓ are linearly independent vectors, admitting only the trivial relation
among them. So x1 = · · · = xℓ = 0; i.e. x = 0, as claimed. □

Now for the main result.

Proof of Theorem 6.14. Since W is non-trivial, there is a non-zero vector v ∈ W . Hence
W contains at least one linearly independent subset {v}. On the other hand by Lemma
6.15, no linearly independent subset of Rn has more than n vectors (because e1, . . . , en span
Rn). This means that we can choose a linearly independent subset {v1, . . . ,vk} ⊂ W with
k ≤ n as large as possible. I claim that any other vector w ∈ W is a linear combination of
v1, . . . ,vk. That is, v1, . . . ,vk also span W and therefore constitute a basis for W .

In order to justify the claim, let w ∈ W be any other vector. Then v1, . . . ,vk,w is a list
of more than k vectors and must therefore be dependent. I.e. there is a non-trivial relation

c1v1 + · · ·+ ckvk + ck+1w = 0.

If ck+1 = 0, then we get a simpler relation

c1v1 + · · ·+ ckvk = 0.

But then c1 = · · · = ck = 0, too, because v1, . . . ,vk are independent. But one of the
constants c1, . . . , ck+1 must be non-zero, so this can’t happen. The alternative is that ck+1 ̸= 0
after all. In this case, I can solve:

w = − 1

ck+1

(c1v1 + · · ·+ ckvk).

In other words w ∈ span(v1, . . . ,vk), which justifies my claim.
Now that I have one basis for W , suppose {w1, . . . ,wℓ} ∈ W is another. Then Lemma

6.15 tells me that

• ℓ ≤ k because w1, . . . ,wℓ are independent, whereas v1, . . . ,vk span W ; and
• k ≤ ℓ because v1, . . . ,vk are independent, whereas w1, . . . ,wℓ span W .
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So k = ℓ. That is, any two bases for W consist of the same number of vectors. □
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Appendix C. Some things about orthogonality I omitted in class

There are two things concerning orthogonality that I’d hoped to do in class but didn’t get
to. So I’ll put them both here.

Proof of Corollary 8.12. I’ll prove (W⊥)⊥ = W by arguing separately that W ⊂ (W⊥)⊥ and
then also that (W⊥)⊥ ⊂ W .

If w ∈ W , then (by definition of orthogonal complement) v ·w = 0 for all vectors v ∈ W⊥.
Hence (again by definition)w ∈ (W⊥)⊥. SoW ⊂ (W⊥)⊥. On the other hand, ifw ∈ (W⊥)⊥,
then the orthogonal decomposition theorem tells me that there are unique vectors w∥ ∈ W
and w⊥ ∈ W⊥ such that w = w∥ +w⊥. I claim that w⊥ = 0, so that w = w∥ ∈ W . Hence
(W⊥)⊥ ⊂ W , too.

To see that the claim is true, observe that w ∈ (W⊥)⊥ and w⊥ ∈ W⊥ means that

0 = w⊥ ·w = w⊥ · (w∥ +w⊥) = v⊥ ·w∥ + ∥w⊥∥2 = ∥w⊥∥2 .

Hence ∥w⊥∥ = 0, and therefore w⊥ = 0 as claimed.
It remains to prove that dimW + dimW⊥ = n. Theorem 8.6 tells us that we have an

orthogonal basis {w1, . . . ,wk} ⊂ Rn for W and an orthogonal basis {v1 + . . .vℓ} ⊂ Rn

for W⊥. I claim that the union B = {w1, . . . vwk,v1, . . . ,vℓ} is a basis for Rn. Thus
n = k + ℓ = dimW + dimW⊥.

To see that the claim is true, note that (by definition of orthogonal complement) every
vector wi in the first basis is orthogonal to every vector vj in the second basis. Hence B
is an orthogonal set of non-zero vectors and therefore linearly independent. On the other
hand, to see that spanB = Rn, let v ∈ Rn be any given vector. Theorem 8.9 tells me that
v = v∥ + v⊥, where v∥ ∈ W and v⊥ = W⊥. But then v∥ must be a linear combination of
w1, . . . ,wk and v⊥ must be a linear combination of v1, . . . ,vℓ, so v itself lies in the span of
B. In short, B is a linearly independent set of vectors that spans Rn, i.e. B is a basis for Rn

as claimed. □

Next I want to derive a formula for the matrix for orthogonal projection onto a subspace.

Theorem C.1. Let W ⊂ Rn be a basis and Q = [u1, . . .uk] be a matrix whose columns form
an orthonormal basis for W . Then the matrix for orthogonal projection onto W is given by

[projW ] = QQT .

Proof. If v ∈ Rn, then Theorem 8.9 and the fact that u1 ·u1 = · · · = uk ·uk = 1 tell me that

projW (v) = proju1
(v) + . . . projuk

(v)

= (v · u1)u1 + · · ·+ (v · uk)uk

= Q

v · u1
...

v · uk

 = Q

uT
1
...
uT
k

v = QQTv.

□

To illustrate this theorem, let W ⊂ R3 be the subspace spanned by

1
0
1

 and

1
2
0

.

Applying the Gram-Schmidt process to these two vectors gives me an orthonormal basis
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u1 = 1√
2

1
0
1

, u2 =

0
1
0

. From this we obtain the matrix for orthogonal projection onto

W :

[projW ] =

1/√2 0
0 1

1/
√
2 0

[
1/
√
2 0 1/

√
2

0 1 0

]
=

1/2 0 1/2
0 1 0
1/2 0 1/2

 .
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Appendix D. Determinants and matrix multiplication

In class I gave some geometric motivation for the fact that det(AB) = (detA)(detB), but
I didn’t really prove it. So I’ll give a proof here.

Its based on two ideas. First, determinants are unique: i.e. there is only one function det
that satisfies all the conditions of Definition 11.1 above. Second, any row operation on a
matrix A can be performed by multiplying A on the left by an appropriate matrix E. I need
to elaborate this second idea.

Definition D.1. An elementary matrix E ∈ Mn×n is one obtained by performing a single
elementary row operation on the identity matrix In.

So for instance, the elementary matrix corresponding to multiplying the last row of a 3×3
matrix by 5 is 1 0 0

0 1 0
0 0 5


and the elementary matrix corresponding to adding −6 times the 3rd row of a 4× 4 matrix
to the first is 

1 0 −6 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Proposition D.2. Let A ∈ Mm×n be a matrix and E ∈ Mm×m be the elementary ma-
trix associated to some row operation. Then the product EA equals the matrix obtained by
performing this row operation on A.

The proof of this amounts to a case-by-case consideration of the elementary matrices
corresponding the each of the three types of row operations. I omit the details, noting only
that if A =

[
a1 . . . an

]
, then EA =

[
Ea1 . . . Ean

]
. Hence it’s enough to check for

any given column vector aj that Eaj is the vector obtained from aj by performing the row
operation on aj.

Proof of Theorem 11.11. Fix a matrix B ∈ Mn×n. Suppose first that detB ̸= 0 and consider

the function D : Mn×n → R given by D(A) = det(AB)
detB

. We have first of all that

D(I) =
det(IB)

detB
=

detB

detB
= 1.

Secondly, if E is the elementary matrix corresponding to multiplying the jth row by a scalar
c ∈ R, then Ã := EA is the matrix obtained from A by mutliplying the jth row of A by c
and EAB is the matrix obtained from AB by multiplying the jth row of AB by c. Hence

D(Ã) = D(EA) =
det((EA)B)

detB
=

det(E(AB))

detB
=

c det(AB)

detB
= cD(A).

Third, if Ã is instead obtained from A by adding a multiple of row i to row j and E is now
the elementary matrix for this row operation, we similary obtain

D(Ã) = D(EA) =
det((EA)B)

detB
=

det(E(AB))

detB
=

det(AB)

detB
= D(A).
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In short, I’ve just shown that D satisfies all three conditions in the definition of determinant.
Hence

detA = D(A) =
det(AB)

detB
.

Multiplying both sides of this equation by detB gives the theorem.
It remains to consider the case when detB = 0. For this I recall that the determinant

of a matrix vanishes if and only if its kernel is non-trivial (see the table in one of the other
bonus sections). So detB = 0 implies that there is a non-zero vector v ∈ Rn such that
Bv = 0. But then ABv = A0 = 0, too. That is, ker(AB) is also non-trivial, and therefore
det(AB) = 0, too. So in summary

det(AB) = 0 = (detA) · 0 = (detA)(detB)

once again. □
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Appendix E. Complex eigenvalues and eigenvectors

Given a matrix A ∈ Mn×n, it can happen that some of the roots of the characteristic
polynomial det(A − λI) are not real, but rather complex numbers λ = a + bi with b ̸= 0.
In the discussion above, I have allowed only real numbers λ as eigenvalues, but one doesn’t
have to make that restriction. In the following definition, the letter C denotes the set of

complex numbers and Cn denotes the set of vectors v =

z1
...
zn

 whose coordinates zj are

allowed to be complex numbers instead of only real numbers.

Definition E.1. v ∈ Cn is an eigenvector with eigenvalue λ ∈ C for a matrix A ∈ Mn×n if
Av = λv.

It is worth noting that if A ∈ Mn×n is a matrix with real entries (the only sort we’ve
considered in this class), then complex eigenvalues and eigenvectors come in pairs. That is,
if v = v1+ iv2 ∈ Cn is a complex eigenvector for A with complex eigenvalue λ = a+ bi ∈ C,
then it’s complex conjugate v̄ := v1 − iv2 is also an eigenvector with eigenvalue λ̄ := a− bi.
Allowing complex eigenvalues and eigenvectors makes it easier to diagonalize matrices.

For instance, Theorem E.2 above becomes the following.

Theorem E.2. A matrix A ∈ Mn×n is diagonalizable if and only if each root λ ∈ C of
det(A− λI) has the same algebraic geometric multiplicity as an eigenvalue of A.

The trade off is that the matrices diagonalizing A have complex entries. In fact, though,
there is a useful and interesting alternative to diagonalization when A has complex eigenval-
ues. I will describe it here only in the case of 2× 2 matrices.

Theorem E.3. Suppose that T : R2 → R2 is a linear transformation with standard matrix
[T ] = A ∈ M2×2 and that λ = a+ bi, b ̸= 0, is a complex eigenvalue of T with an eigenvector
v = v1+ iv2 ∈ C2. Then B = {v2,v1} (note the order here is backward from what you might
expect) is a basis for R2, and the matrix for T relative to B is

[T ]B =

[
a −b
b a

]
= r

[
cos θ − sin θ
sin θ cos θ

]
,

where r =
√
a2 + b2 and θ are the polar coordinates for λ = a+ bi.

In other words the standard matrix A := [T ] for the linear transformation T in this
theorem is similar to a scaling-plus-rotation matrix:

A = r
[
v2 v1

]
=

[
cos θ − sin θ
sin θ cos θ

] [
v2 v1

]−1
.

The nth power of A is then given by

An = rn
[
v2 v1

] [cosnθ − sinnθ
sinnθ cosnθ

] [
v2 v1

]−1
.

Appendix F. The Spectral Theorem

Recall that a matrix S ∈ Mm×n is called orthogonal if STS = I; equivalently the columns
of S constitute an orthonormal set of vectors. So if a square matrix A ∈ Mn×n has an
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orthonormal eigenbasis u1, . . . ,un, we can use the matrix S =
[
u1 . . . un

]
to diagonalize

A:
A = SΛS−1 = SΛST ,

where Λ denotes the diagonal matrix whose ii-entry is the eigenvalue λi for ui. The point
here is that ST is a lot easier to compute than S−1. Moreover, taking the transpose of the
entire equation gives

AT = (SΛST )T = (ST )TΛTST = SΛST = A.

So A must be a symmetric matrix! The so-called ‘Spectral Theorem’ says that the converse
is also true.

Theorem F.1 (Spectral Theorem). A matrix A ∈ Mn×n has eigenvectors u1, . . . ,un that
form an orthonormal basis for Rn if and only if A is symmetric.

In particular, if A is a symmetric matrix, then all roots of its characteristic polynomial
are real, and each has the same geometric and algebraic multiplicity as an eigenvalue of A.

The Spectral Theorem is a little limited by the fact that it only applies to symmetric
matrices (although you’d be surprised how often symmetric matrices show up in practice).
Recall, however, that if A ∈ Mm×n is any (not necessarily even square) matrix, then ATA ∈
Mn×n is symmetric. One can show in fact that all eigenvalues of ATA are non-negative.
Let λ1, . . . , λn denote the square roots of the eigenvalues of ATA. These are known as the
singular values of A.

Theorem F.2 (Singular Value Decompostion). For any A ∈ Mm×n there are orthonormal
sets {u1, . . . ,un} ⊂ Rm and {v1, . . . ,vn} ⊂ Rn such that

A = UΣV T

where U =
[
u1 . . . un

]
, V =

[
v1 . . . vn

]
are the associated orthogonal matrices, and Σ

is the n× n diagonal matrix whose entries are the singular values of A.

This theorem is the main ingredient in applications of linear algebra such as certain types
of data compression and so-called ‘principal component analysis’.
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